Short zero-sum sequences over abelian p-groups of large exponent

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On short zero-sum subsequences over p-groups

Let G be a finite abelian group with exponent n. Let s(G) denote the smallest integer l such that every sequence over G of length at least l has a zero-sum subsequence of length n. For p-groups whose exponent is odd and sufficiently large (relative to Davenport’s constant of the group) we obtain an improved upper bound on s(G), which allows to determine s(G) precisely in special cases. Our resu...

متن کامل

Inverse zero-sum problems in finite Abelian p-groups

— In this paper, we study the minimal number of elements of maximal order within a zero-sumfree sequence in a finite Abelian p-group. For this purpose, in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, the method that we use here enables us to show that, if we ...

متن کامل

Subsequence Sums of Zero-sum Free Sequences over Finite Abelian Groups

Let G be a finite abelian group of rank r and let X be a zero-sum free sequence over G whose support supp(X) generates G. In 2009, Pixton proved that |Σ(X)| ≥ 2r−1(|X| − r + 2) − 1 for r ≤ 3. In this paper, we show that this result also holds for abelian groups G of rank 4 if the smallest prime p dividing |G| satisfies p ≥ 13.

متن کامل

Zero-sum subsequences of length kq over finite abelian p-groups

For a finite abelian group G and a positive integer k, let sk(G) denote the smallest integer l ∈ N such that any sequence S of elements of G of length |S| ≥ l has a zerosum subsequence with length k. The celebrated Erdős-Ginzburg-Ziv theorem determines sn(Cn) = 2n−1 for cyclic groups Cn, while Reiher showed in 2007 that sn(C 2 n) = 4n−3. In this paper we prove for a p-group G with exponent exp(...

متن کامل

On Zero-sum Partitions of Abelian Groups

In this paper, confirming a conjecture of Kaplan et al., we prove that every abelian group G, which is of odd order or contains exactly three involutions, has the zerosum-partition property. As a corollary, every tree with |G| vertices and at most one vertex of degree 2 is G-anti-magic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2017

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2017.01.021